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Abstract 

The single-crystal neutron diffraction data on UO 2, 
recorded by Willis [Proc. R. Soc. London Ser. A, 
(1963), 274, 134-144] over the temperature range 
293 to 1373 K have been re-analysed. The analysis was 
carried out with a structure-factor equation which 
included the third-cumulant coefficient, c123, of the O 
atom. (The symmetry of the fluorite structure reduces 
the remaining third-cumulant coefficients of O and all 
the third cumulants of U to zero.) Apart from the 
overall scale factor, there were three parameters to be 
refined at each temperature: the isotropic B factors of 
U and O and ct23 of O. The temperature variation of 
the B factors is in reasonably close agreement with that 
predicted from lattice dynamics [Dolling, Cowley & 
Woods (1965), Can. J. Phys. 43, 1397-14131. Ifc123 is 
to be ascribed to the influence of anharmonic forces on 
the motion of the atoms, an Einstein model of the 
interatomic potential predicts that c~23 should be 
approximately proportional to T 2, where T is the 
absolute temperature. The experimental data are 
consistent with this prediction, but data of higher 
accuracy are required for a rigorous test. 

Introduction 

The structure-factor equation including third cumulants 
is of the form 

n 

Fc(H) = Z f~ exp (2n'/x, h i - b v h i hj - ictj k h i hj hk), 

(1) 

where H is the diffraction vector, h i (i = 1, 2, 3) are the 
Miller indices, and the summation is over the n atoms 
in the unit cell. If the third-cumulant coefficients Cok are 
set to zero, x i refers to the fractional coordinates of the 
mean position of the xth atom in the unit cell and the 
bu's are the usual anisotropic temperature-factor 
coefficients, f~ is the scattering factor for X-rays or the 
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coherent neutron-scattering amplitude for neutron 
diffraction. The repeated-index summation convention 
is assumed in writing (1). 

The refinement of third-cumulant coefficients is 
rarely carried out, because each atom x has up to ten 
third-cumulant coefficients and it is necessary to have 
exceptionally good diffraction data to derive them. 
However, a suitable data set is provided by the 
single-crystal neutron diffraction measurements of 
Willis (1963) on UO2. Especial care was taken in this 
study, where measurements were made at a number of 
temperatures between 293 and 1373 K, to correct the 
intensities for extinction and other systematic errors. 
Moreover, for the fluorite structure of UO2 (space 
group Fm3m), all third-cumulant coefficients are zero 
by symmetry, with the exception of Cl23 for the O atom. 
Symmetry also requires that the temperature factors 
are isotropic, so that the bu's in (1) reduce to two 
quantities, B U and B o, where B U = 8n 2 u 2 and B o = 
87r2u 2. Thus if we exclude the overall scale factor, the 
number of refinable parameters at each temperature is 
just three: B U, B o and cO3. 

In this paper we give the results of analysing the data 
of Willis in terms of these three parameters. In the 
original analysis, all third cumulants were set to zero 
and the O atoms were displaced slightly from t:~/~111~ to 
(¼ + ~ 1 + ~ 1 + ~). Although it is physically unreason- 
able to displace the O atoms from their equilibrium 
positions, the introduction of the ~ parameter is a 
simple device for simulating the effect of the third- 
cumulant coefficient c°t23. The new approach based on 
third cumulants is a more satisfactory way of carrying 
out the analysis. 

Single-particle potential theory 

Let us represent the dependence of the single-particle 
potential of the O atom on its thermal displacement xyz  
by a function of the form 

V =  V o + ½ ao(X 2 + y2 + z 2) +/3o xyz. (2) 
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The quadratic term is isotropic, in accordance with our 
earlier statement regarding the isotropy of the bu's, and 
the cubic term (xyz) is written so as to conform with 
the point symmetry of the O atom. Equation (2) may 
be considered to be the Einstein potential of an O atom 
vibrating in a potential well of symmetry 43m. 

It can be shown (Willis & Pryor, 1975) that the 
third-cumulant coefficient C0123 and the potential 
coefficient flo are related by 

C023 = 8 ~  3 k2  T2 fl0 
3 3 ' (3) 

ao ao 

where ks is Boltzmann's constant, a o is the lattice 
parameter (= 5.4710 A at 293 K) and Tis the absolute 2c 
temperature. In the absence of lattice expansion, we 
should expect that the potential coefficients a 0 and flo in 
(2) are independent of temperature. Thus c°23 should be °~ 
approximately proportional to T 2. 

10 

Analysis of UO 2 measurements 

A least-squares program for refining B u, B 0 and c°23 
was written by one of  us (RGH),  and was used to refine 
the F 0 data listed in Table 1 of Willis (1963). The 
results are given in Table 1. At all temperatures R is 
2% or less, and there is no systematic variation of R 
with temperature. On the other hand, on carrying out a 
conventional  refinement with all third cumulants set to 
zero, R showed a systematic increase from 2% at room 
temperature to 5% at the highest temperature. This 
suggests that the data are sufficiently accurate to yield 
significant non-zero values for the third-cumulant 
coefficients, but that they are not good enough for the 
refinement of any higher-order cumulants. 

Fig. 1 shows a plot of  c°23 v e r s u s  T 2. Unfortunately,  
the error bars on the third-cumulant coefficients are 
large, and it is only possible to state that (3) is 
approximately obeyed. 

A more satisfactory comparison of observation and 
theory follows by considering the temperature variation 
of the second cumulants, B u and B o. Fig. 2 is a plot of 
the B factors versus absolute temperature. Some results 

Table 1. Refinement of second and third cumulants ofUO 2 

Temperature B U B o C023 R 
(K) (A2) (/[,2) ( x  10 4) (%) 

293 0.37 (6) 0.56 (5) 1.3 (2.5) 2.0 
486 0.45 (4) 0.84 (4) 3.7 (1.9) 1.6 
598 0.50 (4) 0.91 (6) 2.0 (2.2) 1.1 
728 0.67 (3) 1.14 (3) 6.3 (1.6) 1.2 
881 0.68 (3) 1.21 (4) 4.9 (2.2) 0.7 

1036 0.81 (6) 1.52(9) 11.2(4.1) 2.1 
1181 1.09 (3) 1.82 (4) 14.5 (2.0) 1.4 
1268 1.07 (5) 1.98 (7) 31.8 (4.9) 1.5 
1360 1.22 (5) 2.09 (6) 20.1 (3.4) 1.7 

from a powder analysis of UO2 (Albinati et al. 1980) 
are also included on the figure. The broken lines refer to 
the calculated plots of Dolling, Cowley & Woods 
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Fig. 1. Temperature variation of third-cumulant coefficient for 
oxygen. Broken line is best fit to a T 2 law. 
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Fig. 2. Temperature variation of the B factors for uranium and 

oxygen. The broken lines are given by lattice-dynamical theory 
(Dolling, Cowley & Woods, 1965). 
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(1965), based on a lattice-dynamical analysis of their 
measured phonon dispersion relations. On the whole, 
there is reasonably good agreement between obser- 
vation and theory. The theory neglects anharmonic 
contributions to the Debye-Waller factors, and this 
could account for the observed displacements for U 
exceeding the calculated displacements, especially at 
high temperatures. 

Conclusions 

The data of Willis (1963) have been re-analysed with a 
structure-factor equation including third cumulants. 
The only non-vanishing third cumulant for UO 2 is c~23 
for the O atom. Introducing c°23 into the analysis 
accounts for anisotropic anharmonic thermal motion of 

the O atom. c°123, B u and B o have been derived over the 
temperature range 293 to 1373 K. The e.s.d.'s of c°~23 
are too large to allow a rigorous check of the 
theoretical dependence on temperature, but B U and B o 
are in reasonable agreement with those predicted by the 
theory of lattice dynamics. 
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Abstract 

Analytic expressions for the integrated intensities of 
reflexions from faulted close-packed structures have 
been obtained. These involve a single root of the 
characteristic equation (the root which corresponds to 
the reflexion under consideration), its coefficients and 
the initial conditions. The particular utility of the 
solution for cases where one or more roots of the 
characteristic equation have unit modulus is 
demonstrated. 

Introduction 

Diffraction from close-packed crystals with stacking 
faults has been investigated by a large number of 
workers and has been reviewed by Warren (1959, 
1969), Wilson (1962), Cohen & Hilliard (1966) and 
Anantharaman, Rama Rao & Lele (1972) among 
others. In their pioneering papers, Wilson (1942) and 
Hendricks & Teller (1942) developed distinct 
approaches to a solution of this problem. The present 
paper describes a simplification in the procedure for the 
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evaluation of integrated intensities following the dif- 
ference-equation method of Wilson (1942). This 
method also enables an analytical solution for the 
diffuse diffracted intensity when the characteristic 
equation found from the difference equation has roots 
with unit modulus. 

Formulation of the problem 

In general, the diffracted intensity from a possibly 
faulted crystal is given by (Warren, 1959) 

l (h3)  = Iff 2 Z (exp [iq~ra] ) exp (2 nimh3/n), (1) 
171 

where ha, h2, h 3 are continuous variables in reciprocal 
space, ~2 is a function of h~ h 2 which vanishes except 
when h I = H, h 2 = K, H and K being hexagonal indices 
with integer values, and q~,,, the phase difference across 
a pair of layers m layers apart, is given by 

~m=(Zn/3) (H-K)q , , , ,  (2) 

qm being the displacement of the m layer from the origin 
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